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ABSTRACT

A rigorous analysis of the acousto-electric field
in general multilayered SAW devices in the time
Laplace-transform domain is outlined. The

configuration of investigation contains an

arbitrary number of homogeneous and reciprocal

media of any kind of anisotropy and orientation.

The basic equations of homogeneous media are solved

using a spatial Fourier transformation. Using this

solution and the boundary conditions at the

interfaces, the total field problem is reduced to a

boundary value problem of the electric potential
and the electric surface charge density in the
plane of the electrodes, and a relation between the

Fourier transforms of these quantities. This dual

boundary value problem is solved iteratively, by
minimization of the root-mean-square error in one

of the boundary conditions.

INTRODUCTION

Traditional Surface Acoustic Wave (SAW) devices

consist of a number of electrodes on a

piezoelectric substrate. Current technological

developments however, involve SAW devices

consisting of a number of electrodes in a
multilayered environment, such as integrated SAW

devices and chemosensors. In integrated circuits, a
piezoelectric layer of ZnO is deposited on a

Silicon substrate, and a typical SAW chemosensor

consists of a gas sensitive layer on a

piezoelectric substrate. These SAW devices exhibit

a very complicated behavior, and a clear

understanding of their physical operation is

important to their design.

This paper summarizes a rigorous analysis of

general multilayered SAW devices, in which the

piezoelectric effect is fully taken into account.

This research has been carried out to support the

technical developments and applications of these
devices. It is a continuation of former work (l),

in which a method was presented to analyse

configurations, in which the symmetry and

orientation of all media was restricted. In the

present work the analysis only uses the reciprocal

properties of the homogeneous media. A more

detailed description of this analysis is given in
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Fig. 1. The general configuration.

THE ACOUSTO-ELECTRIC FIELD DESCRIPTION

OF THE GENERAL CONFIGURATION

We confine our attention to SAW devices that can be
modelled by the general configuration of Fig. 1.
This configuration consists of a number of

perfectly conducting electrodes of vanishing

thickness in a multilayered structure. The
Cartesian reference frame (il,i,,i,) and pertaining

spatial coordinates are chosen such that the plane

xs “ O is one of these interfaces. The electrodes
are located in this plane X3 .- 0 (the electrode

plane). The layered structure contains any number M

of homogeneous layers above the electrode plane,

and any number N of layers below it. All media are
time-invariant, locally reacting, reciprocal and

homogeneous. They may posses any type of symmetry

and orientation. All sources in the configuration

are electric surface charge sources in the
electrode region of the electrode plane.

The field analysis of the general

configuration is carried out in the time Laplace-
transform domain. A quantity in this domain is

obtained from its representation in the time domain

by the Laplace transform. This transform takes

advantage of the invariance of the configuration

with respect to time, and the linear properties of

the acousto-electric field. Causality of the field
is enforced, by r?quiring all field quantities to

be analytic in the right half of the complex plan[?
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of the Laplace variable. The frequency behavior of

a configuration is obtained from this analysis in

the limiting case of a vanishing positive real part

of the Laplace variable.

In each homogeneous medium, the acousto-

electric field is described by the basic equations

in linear form; it is assumed that the amplitudes
of the involved quantities are small enough such

that the first order terms account for the studied

effects sufficiently accurately. The basic
equations are derived from the equations of

elastodynamics, the quasi-static approximation

(neglecting the magnetic field) of Maxwell’s

equations of electromagnetic and the constitutive

equations. At the interfaces the basic equations do

not hold and have to be supplemented by appropriate

boundary conditions.

THE SPECTRAL FIELD ANALYSIS

The analysis takes advantage of the spatial

invariance of the layered structure in all

directions parallel to the interfaces. The field
analysis in each homogeneous medium is performed in

the spectral domain. The representation of a

quantity in the spectral domain is obtained from

its representation in the time Laplace-transform

domain (or spatial domain) by a two-dimensional

Fourier transform with respect to x, and X2. In the

spectral domain, the basic equations can be reduced

to a linear, homogeneous first order differential
equations for the field vector in the variable X9.

The eight elements of the field vector are the

field quantities being continuous across the non-

electroded interfaces.
In the spectral domain, the acousto-electric

field of each homogeneous medium can be written as

the general solution of the differential equation
for this field vector. This solution can be written

as the product of a 8x8 composition matrix and a

wave vector. The columns of the composition matrix

are the eigenvectors of the system matrix of the

differential equation of the field vector. Each of

the eight elements of the wave vector is the

product of some constant and an exponential

function of which the argument depends on one of

the eigenvalues of the system matrix. For real and

non-zero values of the spatial Fourier transform
variables and for the time Laplace variable having
a real part larger than zero, four of these

eigenvalues of passive media have a real part

larger than zero, and the other four have a real

part smaller than zero. Consequently, the causality

constraints exclude four of the eight wave vector

components of the superstrata and substrate. The
eigenvectors can all be taken orthogonal in the

sense of the reciprocity theorem. As a consequence,
the decomposition matrix, being the inverse of the

composition matrix, can be obtained without
carrying out matrix inversion.

The solution of each homogeneous medium and

the continuity of the field vector across the

interfaces outside the electrode plane, is the

basis of the propagator matrix formalism and the

scattering matrix formalism. In the propagator
matrix formalism, the field vectors in two

different locations are related. In the scattering

matrix formalism, the wave vector in two different

locations are expressed in each other. Both

formalisms lead to the effective admittance

relating the spectral electric potential and the

spectral electric surface charge density in the

electrode plane. The propagator matrix formalism

is more straightforward, but is numerically
instable. This problem is avoided in the more

sophisticated scattering matrix formalism.

THE ITERATIVE SOLUTION

OF THE DUAL BOUNDARY VALUE PROBLEM

The boundary conditions for the electric potential

and the electric surface charge density in the

electrode plane X3 - 0 form, together with the

spectral relation between these quantities, the

dual boundary value problem. The acousto-electric

field of the entire multilayered configuration can

be found from the solution of this dual boundary
value problem.

This effective admittance can be written as a

quotient of the determinants of two 8x8 matrices.
The elements of these matrices are finite for

finite, non-zero values of the spatial Fourier

variables and a finite value of time Laplace

variable. The curves in the plane of the Fourier

variables along which the numerator of the

admittance is equal to zero, represents the freely

propagating waves of the layered structure, such as

surface waves. The curves along which the

denominator vanishes, represents the waves for the
multilayered structure in which the plane X3 - 0 is

taken perfectly conducting.
The dual boundary value problem is solved

iteratively providing an estimate of the field in

each step, satisfying the boundary conditions for

the electric surface charge density. The electric

potential of this field deviates from the

prescribed value at the electrodes. The integrated

square value of this deviation is introduced as an

error criterion for the satisfaction of the

boundary conditions at the electrodes. In each

step, the improved estimate field is obtained as

the superposition of the estimate field of the
previous step and a correction field. The potential

of this correction field is taken orthogonal to the

correction potentials of all previous steps. This

procedure leads to a minimum value of the
integrated square value of the deviation at the

electrodes. The correction field in each step is

constructed from a variational field. At the

electrodes, the variational surface charge density

is taken equal to the surface charge density

associated to the deviation of the estimated

electric potential in the previous step, and
outside the electrodes it is taken equal to zero.
The variational potential is related to this
variational surface charge density by the spectral

relation. In the numerical Fourier inversion of the
spectral potential, the contribution of the zero of
the effective admittance has to be determined

analytically, when this zero is located near the

integration path.
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NUMERICAL RESULTS

The general field theory for multilayered

structures and the iterative techniques have been

programmed in FORTRAN 77 on a VAX-11/750 computer.

To keep the computational effort within reasonable

limits, the configurations in the present computer

program are taken invariant in the x,-direction.

This means that all electrodes in the plane X3 = O

are infinitely long and parallel to iz. The

configuration of Fig. 1 thus reduces to one with a

two-dimensional character.
To obtain an impression of the performance of

the present method, a configuration of ten

infinitely long electrodes on a PZT-4 substrate has
been considered (Fig. 2a). The c-axis of infinite

symmetry is taken perpendicular to the electrode
plane. The results of the present method as

depicted in Figs. 2b and 2c, are in agreement with
the results of a different, computational technique

for single substrate configurations (3). The real

part G and the imaginary part B of the admittance

per unit length in the x,-direction as function of

the normalized frequency k are given in Fig. 2b.
The normalized frequency k is ~~ven as k = uL/vsw,

with u the radial frequency, v the frequency

independent surface-wave velocity of the PZT-4

substrate and L as indicated in Fig. 2a. The

amplitude X of potential associated to the surface

wave is depicted in Fig. 2c. The dashed curve in

Fig. 2b represents the surface-wave contribution to

the real part of the input admittance.
The present method of analysis has also been

applied to the multilayered structure of Fig. Sa.

This configuration consists of four electrodes in a

ZnO-Si02-Si structure. This configuration

represents practical integrated SAW devices. The

orientation of the c-axis of the hexagonal ZnO is

perpendicular to the plane of the electrodes, and
the dimensions are chosen in accordance with a

practical design. For the values of the material

constants we refer to (2). In former work (1) this
axis was taken parallel to the electrodes, which is
not the practical situation in these integrated SAW

devices. The real part G and the imaginary part B
of the admittance per length unit in the xz-

direction as function of the normalized frequency k

are depicted in Fig.c3b. The normalized frequency k

is given as k = wL/v with u the radial frequency,
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Fig. 2a. The two-dimensional single substrate

configuration of which the numerical results

are given in Figs. 2b and 2c.
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Fig. 2b. The real part G and the imaginary

part B of the admittance of the configuration

of Fig. 2a, as function of the normalized

frequency k. The dashed curve is the surface

wave contribution to the real part of the

admittance.
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Fig. 2c. The amplitude X of the surface-wave
potential of the configuration of Fig. 2a, as
function of the normalized frequency k.

Vc the cutoff velocity and L as depicted in Fig.

3a. It is noted that the behavior of the input

admittance is mostly capacitive. The amplitudes $s’~

of the potential associated to the surface waves OF
this configuration as function of the normalized

frequencY k are given in Fig. 3c. In contrast to
Single substrate structures, multilayered

structures may have more than one surface wave
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Fig. 3a. The two-dimensional layered

confimration of which the numerical results

are p~esented in Figs. 3b-3d.
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Fig. 3b. The real part G and the imaginary

part B of the admittance of the configuration

of Fig. 3a, as function of the normalized
frequency k. The dashed curves are the surface

wave contributions to the real part of the

admittance.

Swin
1.2 r

@
10 -

10-’ v

t

08 -

0.6 -

0.4 -

02 -

00
‘0.0 05 10 15 20 25 30

Fig. 3c. The amplitude $s” of the surface-wave

potential of the configuration of Fig. 3a, as

function of the normalized frequency k.
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Fig. 3d. The surface wave velocities of the

layered structure of Fig. 3a as function of

the normalized frequency k. The solid curves
are associated to the structure of Fig. 3a
without the electrodes in the plane X3 = O,

and the dashed curves are associated to the
structure of Fig. 3a having a perfectly

conducting plane X3 = O.

having velocities that vary with the frequency. The
surface-wave velocities of the present multilayered

structure as function of the normalized frequency k

is shown in Fig. 3c.

CONCLUSIONS

The present analysis is able to determine the

acousto-electric field of general multilayered SAW
devices accurately. The proposed numerical
technique enables the calculation of their field

rigorously with reasonable computational effort.
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